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Necessary condition of the Turing instability
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A reaction-diffusion system in any number of spatial variables consisting of an arbitrary number
of chemical species cannot exhibit Turing instability if none of the reaction steps expresses cross
inhibition. A corollary of this result underlines the importance of nonlinearity in the formation of
stationary spatial structures, a kind of self-organization on a chemical basis.
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I. INTRODUCTION

40 years ago, in a seminal paper [1], A.M. Turing (who
is well known for his achievements in computer science
and in the practice of deciphering World War II codes)
proposed a model for morphogenesis. He wanted to clar-
ify how it is possible that a symmetric embryo evolves
into something which is of the asymmetric form. His idea
was that a reaction-diffusion system may have a stable
stationary point if diffusion is not present, but by turn-
ing on diffusion the given stationary point may lose its
stability and spatially inhomogeneous stable stationary
patterns may emerge. The importance of this paper has
mainly been recognized by theoreticians [2-11].

However, no well-defined ezperiment had been made
until very recent years. All the systems exibiting spatial
patterns either contained convection or surface effects,
thus the origin of pattern formation has never been pure
Turing instability. An important step leading to the first
experimental example was the construction of the an-
nular gel ring reactor [12], allowing the observation of
chemical pinwheels (a kind of moving pattern in reaction-
diffusion systems). It was putting the CIMA (chlorite io-
dide malonic acid) reaction into the gel ring reactor, the
idea of DeKepper and his co-workers [13,14], which fi-
nally produced the long-sought-for result: the emergence
of stable stationary patterns as a result of diffusive insta-
bility.

Lengyel and Epstein [15] showed that the starch in-
dicator present in the CIMA system brings about the
difference between the diffusion constants of the differ-
ent chemical species which is a necessary condition of
diffusive instability (cf., however, [16]).

In the present paper we try to contribute to the theo-
retical investigation of Turing instability in the following
way: we show that the presence of cross inhibition is a
necessary condition of Turing instability. As a special
case, it also turns out that the presence of higher than
first-order reactions is a necessary condition, indepen-
dent of the number of chemical species. This statement
is an extension of earlier results on three-species systems
which have been obtained using elementary methods by
the authors [17].
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First, we summarize the theoretical framework for the
investigation of diffusive instabilities in reaction-diffusion
systems. Second, we formulate the mathematical state-
ment implying our main result. Finally, we show that
the usually investigated models giving rise to Turing in-
stability do contain cross inhibition in accordance with
our results.

II. TURING INSTABILITY
IN REACTION-DIFFUSION SYSTEMS

A. Reaction-diffusion systems

Let us consider a vessel, i.e., a finite simply connected
domain Q in RN (N is an arbitrary positive integer,
the number of spatial dimensions) in which diffusion and
chemical reaction steps take place. Let us suppose that
the chemical species occurring anytime during the reac-
tion are A(1),..., A(M) (M € N). Among the chemical
species the following R (€ N) reaction steps take place:

M

> a(m,r)A(m)

m=1

k M
5 ST B(m,r)A(m)

m=1

(r=1,...,R). (1)

The non-negative integers o(m, r) and B(m,r) are called
stoichiometric coefficients.

The usual mathematical model for this process, taking
into account diffusion of the species, is the system of
partial differential equations

Oem (t,x)

En = fm(c(t, X)) + Dnlen(t,x)

(m=1,...,M) (2)

where ¢, (t,x) is the concentration of species A(m) at
time ¢ at the location x € €2,

c(t,x) := (c1(t, x),...,em(t, %)),

D,, € Rt := {z € R,z > 0} is the diffusion constant of
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species A(m),

R

fm(c) = Z[ﬂ(m’ ) — a(m,r)w(c),

r=1

and w,(c) is the rate of the rth reaction step at the con-
centration ¢ supposed to be continuously differentiable
(see Ref. [18]).

From now on we require that w,(c) > 0 whenever
supp ¢ D supp of- ,r) and that w,(c) = 0 whenever
there exists m such that ¢,, = 0 and a(m,r) > 0. This
is the formal expression of the natural requirement that
reaction step r takes place (proceeds with nonzero rate)
if and only if all its reactant (:=left-hand-side) species
are present (in nonzero concentration).

The most often used form of w, is of the mass-action

type when there exist positive numbers &, (r =1,..., R)
such that w,(c) := ki, Hﬁil cgPm) (=: krc®(-7)) . Mass-

action-type reaction rates obviously fulfill the two re-
quirements stated above.

In order to uniquely define the system, initial and
boundary conditions are to be specified. We take the
initial conditions

em(0,x) = 2, (x) xeQm=1,...,M) (3)

and we can either take fixed boundary conditions

(x€dQ; m=1,..., M), (4)

em(tX) = cp,

where ¢}, is the m-th coordinate of the homogeneous
steady state (see the formal definition below), or the zero-
fluz boundary conditions

(Vem(t,x), v(x)) =0 (x€dQ; m=1,...,M), (5)

where v(x) denotes the outer normal to 8Q at the point
x € 0.

Astonishing as it may seem from the mathematical
point of view, numerical and experimental investigations
show no essential differences betwen the two cases, if the
size of the vessel is much larger than the characteristic
wavelength. Usually the emerging structures differ only
in phase.

B. Turing instability

The first constituent of Turing instability is that there
exists a non-negative steady-state solution c* to the ki-
netic differential equation

¢(t) = £(c(?)), (6)

where f := (f1,..., fum) is defined by the first term on
the right-hand side of (2). In other words, c* satisfies
f(c*) = 0. It is assumed here that the real parts of all
the eigenvalues of the Jacobian f’(c*) are negative.

Let us introduce

o(A) := {\ € C; \is an eigenvalue of A}

for the spectrum of an arbitrary matrix A € RM*M and
let

s(A) :==max{Re A ; A € 0(A)}

be the spectral abscissa of A. Then the assumption is
just

s(f'(c*)) <. (7)

This is a sufficient condition (but it is only necessary in
the case of a linear f) of the asymptotic stability of the
steady state c* of the kinetic differential equation de-
scribing the spatially homogeneous case. Inequality (7)
obviously implies that the solution to the full nonlinear
reaction-diffusion system (2), (3), and (4) or (5) returns
to the spatially homogeneous state c* after a small spa-
tially homogeneous perturbation.

Let Q be a sufficiently regular bounded domain in R¥.
It is known that all eigenvalues ko, k1, . .. of the Laplace
operator on 2 under both the given boundary conditions
are negative. Martin ([19], proposition 2) has shown that
if for all k =0,1,...

s(f'(c*) + kx D)) < 0 (8)

with D := diag(D;,...,Dys), then c* is a globally uni-
formly asymptotically stable solution of the nonlinear
reaction-diffusion equation (2) in the maximum norm.

If condition (7) is fulfilled and there exists j for which
(8) does not hold, then we say that the system (2) shows
Turing instability. This may imply that stable inhomo-
geneous stationary patterns emerge in the original non-
linear system (2). This phenomenon has been observed
numerically, but a global analytical investigation of the
nonlinear system seems to be quite difficult even in sim-
ple special cases.

C. The absence of negative cross effects

Before investigating some simpler cases in detail, an-
other important notion has to be introduced. The ki-
netic differential equation (8), of the mass-action type, is
a polynomial differential equation, but not all polynomial
differential equations may be considered to be models of
chemical reactions [20].

Let us consider Turing’s example [1]:

t=58r—6y+1, y=6x—Ty+1. (9)

The term —6y on the right-hand side of the first equation
expresses the fact that = decreases in a process in which
it does not take part, or expresses a negative cross effect.
Kinetic differential equations are characterized by the ab-
sence of such terms. This characterisation has proved
quite useful to study kinetic gradient systems [21], to de-
sign oscillatory reactions [22], or to investigate chaos in
chemical reactions [23].
Suppose we have only first-order reactions, i.e.,

M

Z a(m,r) <1

m=1

forallr=1,...,R.

Then, the absence of negative cross effects implies that
the coefficient matrix A of the right-hand side of the ki-
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netic differential equation is an essentially non-negative
matrix, i.e.,

Amp = 0, m,p=1,...,M; m#p. (10)

Obviously, in the case of first-order reactions with mass-
action-type reaction rates we have A = f’(c*) for any
c* € RM,

D. Special cases

Now let us turn to the recapitulation of special cases.
If M = 1, then s(f'(c*)) = f/(c*), therefore (7) implies
(8) for any kind of reaction.

If M = 2 and the reactions are of the first order with
mass-action-type reaction rates, then (7) is equivalent to
stating

a1 +az <0 (11)
and
det(A) 1= Qa11Q23 — @12a321 > 0. (12)

Inequality (12) can only hold if a;;a22 > 0 because of the
essential non-negativity of A. Taking into consideration
(11) one obtains a;; < 0 and agy < 0. Therefore, for all
c1,cg € RT

a1+ a2 —(c1+¢2) <0 (13)
and
det(A) — (c1a22 + c2a11) + cicp > 0. (14)

Inequalities (13) and (14) together imply (8) if one takes
c1 := —kgD1,c2 := —KpD2. The same argument can
be applied to the more general case when one assumes
the absence of cross inhibition instead of assuming that
the reaction steps are of the first order as in this case
A := f'(c*) is essentially non-negative.

It can be shown using an elementary argument that
first-order reactions with mass-action-type reaction rates
are not enough to evoke Turing instability even in the
case M = 3 [17]. Jacimirsky [24] and Li and Wu [25]
have found that three species with higher-order formal
reactions may produce Turing instability.

III. MAIN RESULT

The matrix A € RM*M js said to be non-negative if
every element of A is non-negative. An M x M real ma-
trix A with non-negative elements off the main diagonal
is called essentially non-negative.

The following definitions and statements are needed
for the proof of the main result (see [26,27]).

The spectral radius of a matrix A € RMXM g defined
as

o(A) :=max{ [\ : A€ Jspec(A)}

Let A € RMXM be a non-negative matrix. Then the
following statements hold. (i) o(A) is an eigenvalue of
A and the spectral radius of A4 is equal to the spectral
abscissa of A, ie., o(4) = r(A); (ii) if, in addition, B

also is a non-negative matrix, then
o(A+ B) > o(A).

Our main tool will be the statement below.

Theorem. Let us suppose that for the essentially non-
negative matrix A € RM*M 5(4) < 0 holds, and that C
is a diagonal matrix with non-negative elements on the
main diagonal. Then s(A4 — C) < 0 also holds.

Proof. We prove first the following statement: if A e
RM*M  is an essentially non-negative matrix and C =
diag(ct,...,car) € RM*M  js 5 non-negative diagonal
matrix, then s(A + C) > s(A).

Let us introduce

K :=max{cym, — amm; m=1,...,M}.

Then A — C + K is non-negative and the statement is
implied by the following series of inequalities and equal-
ities:

s$(A)+ K =s(A+ KI) = o(A+ KI)
>0(A-C+KI)=3s(A-C+KI)
=s(A—C)+K.

For the proof of our main result assume that there exists
an eigenvalue x of the Laplace operator on Q under the
given boundary conditions such that s(A + kD) > 0.
Since —xD is a non-negative matrix, we have that

s(A) = s((A+«D) — kD) > s(A+ D) >0,

contradicting the condition s(A4) < 0. This completes
the proof of our main result.

The reaction (1) is said to contain cross inhibition
at the concentration ¢ € RM if there exist m,p €
{1,...,M}; m # p for which 9, f,(c) < 0 holds.

A reaction without containing cross inhibition has an
essentially non-negative Jacobian f/(c) at all concentra-
tions ¢. Thus, the theorem above immediately implies
the statement below.

Corollary 1. Suppose that reaction (1) does not con-
tain cross inhibition. Then it cannot show Turing insta-
bility either.

Obviously, reaction (1) endowed with mass-action-type
reaction rates does not contain cross inhibition if for all
r € {1,..., R} either 8( - ,7) > a( -, 7) is true or, if there
exist p € {1,..., M} for which B(p,7) < a(p,r), then for
alm#p me{l,...,M},a(m,r) =0.

The chemical meaning of this property is that a reac-
tion step containing cross inhibition is a step in which
the rate of decrease of a chemical species is negative in
the presence of another species.

Since first-order reactions induce a linear kinetic dif-
ferential equation with an essentially non-negative coef-
ficient matrix, we obtain the following

Corollary 2. First-order reactions with mass-action-
type reaction rates cannot show Turing instability.

IV. EXAMPLES
A reaction only consisting of steps of the type

a(m,r)A(m) — B(m,r).A(m)
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r=1,...,Rim=1,...,M)

is said to be a generalized compartmental system. Such a
reaction does not contain cross inhibition.
The model by Gierer and Meinhardt [3] given by

f1(21,82) 1 = k1 — ko1 + k32 /2,
f2(21,82) 1 = kalh — k52

does contain cross inhibition as 8 f1(¢1,&2) = —ka?/c2.
Turing’s example (9) does contain cross inhibition, as
it does contain a negative cross effect: 92 f1(x,y) = —6
< 0.
It can easily be shown that all the other (cited and not

cited) models showing Turing instability do contain cross
inhibition in accordance with our result [28-32].
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